
Happy birthday Ghirardi!
Yesterday afternoon at the quantum foundations meeting in Erice (supported by COST) we celebrated the 80th birthday (somewhat in advance) of GianCarlo Ghirardi who famously worked on collapse models, in an attempt to deal with the quantum measurement problem. He's the "G" in GRW collapse theory. (Ghirardi is pictured here -- a bit fuzzily --being presented with a gift by Catalina Oana Curceanu and Detleft Duerr.)
March 27, 2015
Physicists Angelo Bassi and GianCarlo Ghirardi discuss collapse models. From the COST quantum foundations meeting in Erice, Italy.
Full Podcast
I've just posted a special podcast with interviews with physicist and meeting organiser Angelo Bassi and Ghirardi himself. Bassi talks a bit about the motivation behind collapse models and what they are, but they basically try to help explain why the classical world we see around us involves people and things in definite places, while one small scales, particles exist in a fuzzy uncertain realm.
The idea is that the wavefunction of particles can undergo spontaneous collapse, but in the case of individual particles, the odds of this happening are slim, so on the microscopic level you should see the same sort of things that standard quantum mechanics predicts. But when you bring lots of particles together in a macroscopic object, the probability of collapse shoots up -- and hence they behave classically.
But how do you test this idea? There's nothing in principle in standard quantum mechanics that prevents ever larger particles (even cats) being in quantum superposition, if you can prepare your experiment carefully enough (which is tough to do). By contrast, GRW predicts that above some certain mass limit, collapse is inevitable, no matter how pristine your experiment. So that gives you something different to search for.
In a previous post, I mentioned matter-wave interferometry experiments. Yesterday, FQXi's Hendrik Ulbricht, of the University of Southampton, talked about efforts to see quantum effects in ever larger objects -- cold atoms, molecules, metal clusters or nano particles, and even cantilevers -- but at the moment they are not well-developed enough to be able to test collapse models. Another problem is that if you carry out such a test and you do see a loss of quantum effects, it might have been caused by problems with the experiment, and decoherence due to interactions with the environment, rather than revealing something fundamental.
You can hear more on the podcast.

Physics Dog!
The blurry image shows a dog who apparently loves physics -- he gatecrashed the meeting for two days running (in search of Schrodinger's cat?). The first time, he ran onto the stage with the lecturer, who was speaking about quantum biology. The second time, he stopped in front of the stage and barked loudly at the speaker, who was talking about string theory. Make of that what you will!