In the 20th century, physics was split into quantum mechanics on the microscale, classical mechanics on the macroscale, and general relativity on the cosmic scale, each with a distinct conceptual framework. On the contrary, a simple realistic picture of fundamental waves can provide the basis for reunifying physics on all scales. This neoclassical synthesis combines aspects of classical, quantum, and relativistic physics, but is distinct from each of them. Electrons are soliton-like waves with quantized spin, which locally define time and space. In contrast, nucleons and atoms are simply composites, with no wave nature of their own. There are no point particles, quantum entanglement, or gravitational singularities. Furthermore, mathematical abstractions such as curved spacetime and complex quantum waves in Hilbert space are not fundamental at all. This approach makes predictions that differ from orthodox theory, which can be tested.
Alan M. Kadin