How Quantum is Life?

Voting Deadline: December 1, 2025 at 10AM US EST

Note that you must be an accepted competitor or an FQxI Member to log in here and rate the essays.

Abstract

Mathematics is usually regarded as a kind of language. The essential behavior of physical phenomena can be expressed by mathematical laws, providing descriptions and predictions. In the present essay I argue that, although mathematics can be seen, in a first approach, as a language, it goes beyond this concept. I conjecture that mathematics presents two extreme features, denoted here by irreducibility and insaturation, representing delimiters for self-referentiality. These features are then related to physical laws by realizing that nature is a self-referential system obeying bounds similar to those respected by mathematics. Self-referential systems can only be autonomous entities by a kind of metabolism that provides and sustains such an autonomy. A rational mind, able of consciousness, is a manifestation of the self-referentiality of the Universe. Hence mathematics is here proposed to go beyond language by actually representing the most fundamental existence condition for self-referentiality. This idea is synthesized in the form of a principle, namely, that mathematics is the ultimate tactics of self-referential systems to mimic themselves. That is, well beyond an effective language to express the physical world, mathematics uncovers a deep manifestation of the autonomous nature of the Universe, wherein the human brain is but an instance.
Christine Cordula Dantas
0 Likes 37 Ratings